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New physical concepts are developed in connection with the two fun-
damental processes resulting in the transfer of heat from a heater to a
liquid under conditions of nucleate boiling.

We know from [1, 2] that no satisfactory theory cur-
rently exists for heat transfer in nucleate boiling.
Moreover, it is presently not clear how the heat is
transferred from a hot solid surface to the boiling
liquid. In most references devoted to heat transfer in
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Fig. 1. Vapor bubbles on heater surface.

nucleate boiling, the authors deal with their semiem-
pirical formulas by the methods from the theory of
similarity [3—-11].

In this article—partially developing the concepts of
[12]—an attempt is undertaken to provide a qualitative
picture for the initial stage in nucleate boiling, and
also to suggest means of constructing the quantitative
physical theory of the heat transfer which takes place
in this process.

The heater surface is primarily in contact with the
liquid medium in the nucleate boiling regime. Because
of the low thermal conductivity of steam, we can ne-
glect the heat transmitted directly to the bubbles, and
we can assume that the density of the heat flow in the
nucleate boiling regime, just asinthe absence of phase
conversion, is defined by the conventional formula

g==—2» grad T. (1)

The intensity of heat transfer is thus determined by
the very temperature gradient which exists within the
liquid at the boundary with the heater. In turn, the
quantity grad T is a function of the nature of the heat-
transport process within the liguid.

There evidently exists a simple relationship be-
tween the temperature gradient at the heater surface
and the thickness 6 of the superheated layer:

grad T = AT . (2)
8

Using the familiar relationship forthe heat-transfer

coefficient

.
AT
we obtain the equation
A
o= (3)
)

which establishes that the heat-transfer intensity in
nucleate boiling {(at a distance from the cris point) is
inversely proportional to the thickness of the wall
layer for the given liquid. The quantity & is deter-
mined by the rate of heat transport from the super-
heated layer to the core of the liquid and to the ambi~
ent medium. The heat from the wall layer is removed
by conduction, natural convection, the evaporation of
the superheated liquid in the bubbles situated at the
surface, and by forced convection (mixing), this last
brought about by the growth, separation, rise, and
bursting of the bubbles. As demonstrated by experi-
ment, since the transfer of heat in boiling is consid-
erably greater than the loss of heat in the comparable
case in which the liquid fails to boil at identical tem~
peratures, i.e., when the transfer of heat is accom-
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Fig. 2. Plots of ¢ and ¥ as functions
of edge angle 0.

plished exclusively by conduction and natural convec-
tion, we are justified in treating the vapor formation
and bubbling as fundamental processes of heat transfer
in the phase conversion of a liquid into steam. As re-
gards the fraction of heat transferred in each of these
processes, this is a function of the boiling conditions:
the dimensions, orientation, wettability, and the de-~
gree of roughness for the solid heater surface, aswell
as of the viscosity, the heat of vapor formation, the
density, and the surface tension of the liquid. For pur-
poses of a more penetrating analysis into the relation-
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ship between the magnitude of heat transfer and the
conditions of the process, we will therefore assume
the coefficient o to be composed of two terms:

a = ay - Up. (4)

The quantity o, characterizes the intensity of heat
transfer due to evaporation; o, denotes the heat-
transfer intensity brought about by bubbling.

The phenomena responsible for these two heat-
transfer processes are different in their physical na-
ture; the relationship between these factors and the
conditions of boiling therefore do not coincide. Ap-
parently, the difficulties encountered in deriving an
analytical expression for the heat-transfer coefficient
as a function of super-heating and of similar param-
eters arise primarily because this circumstance has
been neglected.

The form of the function o{AT) can be determined
in general form in the following manner. We will as-
sume that the average height h of the surface bubbles
is substantially greater than the thickness & of the
superheated layer (Fig. 1a). It is natural to assume
in this case that the bubbles are in mechanical and
thermal equilibrium with the entire thickness of the
liquid, i.e., the pressure and temperature within the
bubbles are, respectively, denoted by p, and T;. As
regards molecular-kinetic equilibrium, this phenom-
enon is naturally absent with respect to the super-
heated layer from which the liquid is evaporated into
the bubbles. The amount of vapor entering a bubble is
proportional to the pressure difference Ap = p; — py.

Since the vapor enters a bubble only from the su-
perheated layer, the portion of the heat flow q; which
is extended on evaporation must be proportional to the
specific heat of vapor formation r, the density of the
active centers n, the pressure difference Ap, and the
mean length 27X of the perimeter of the surface-bub-
ble base:

g, = const rnx A p. (5)

For superheating that is not too extensive, we are
correct in assuming that

dp
Ap="P AT
P="r

Consequently, for the coefficient oy we have the
relationship

—dp
= const rmx —=. 6
o daT (6)

The bubble-base radius x is easily calculated if we
neglect the deviation of bubble shape from the spheri-
cal. As is clear from Fig. 1b, here

x =R cos 0.

The spherical radius R,y of the maximum bubble
can be found by comparing the volume of the segment

Vimax = —;— 7 R3x (2 4 3 cos 8 — cos® 8)
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with the separation volume of the bubble
4
Vo= ? T Rg,
where, according to the Fritz formula,
172
Ry = coust 0 (L) i (6"
08

Denoting f(8) = (2 + 3cosf — co_s3 6)/4 and introducing
the concept of the mean radius R, we obtain

R,
27770

Ruex =

This gives us the following:

~ Rg cos 6 "
- 2;/‘,%) ‘ (6")

|

Finally, having substituted the value of Ry from (6')
into this last expression, we bring it to the form
[s2

_ 1/2
x = const @ (6) (—) ,

0g )

where ¢(0) = 6cos 8 U(G)]"/3 is a function of 8, whose
curve is shown in Fig. 2.

Now, to determine the nature of the relationship
between ¢ and the superheating, let us examine the
manner in which AT influences each of the factors in
the right-hand member of {(6). In the case of low su-
perheating, the average bubble dimension, the spe-
cific heat of vapor formation, and the derivative dp/dT
can be assumed constant in approximate terms, and
conversely, the number of active centers is an ex-
tremely strong function of the superheating, and namely
{12},

n = const (A TH. (7%

Having substituted (7) and (7') into (6), we obtain an
equation valid for the first stage of nucleate boiling:

12
o —constr L (A TV ¢ (6) (i> . (8)
dar og
In addition, if we use the Clapeyron-Clausius formula
d _rp
ar T,

s

the expression for the first coefficient of heat transfer
assumes its final form

a;=ar’y (0)

(f‘j()')l/2 (A T)2. (9)

T g2

Here a is a constant characterizing the state (rough~
ness) of the horizontal heating surface.

To determine the form of the function a,(AT), we
should bear in mind that it is only the motion of the
surface bubbles that is significant in the removal of
heat from the thin wall layer, and this is accomplished
by mixing, Indeed, as the "three-dimensional bubble
separates from the heater surface and enters the main
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part of the liquid, floating upward, it brings about the
mixing of the liquid, primarily in the vicinity of the
adjacent layer. Since the surface bubbles are sur-
rounded at the base by the liquid superheated at the
wall, during their growth, as well as at the instant of
separation, the bubbles can cause the displacement
and the mixing of precisely this superheated layer.

It is difficult for the surface bubble to move as an
entire whole, since it is attached to the surface of a
solid along which it is impossible for the liquid to
slip. The base of a growing bubble therefore does not
change smoothly, but rather in jumpwise fashion; the
shape of the bubble deviates from the equilibrium shape
in this event. This leads to fluctuations in the shapes
of the surface bubbles. The faster their growth, the
more intensive their fluctuation. The existence of such
fluctuations has been confirmed in our laboratory by
T. S. Chigareva.

It is our contention that it is these pulsating surface
bubbles that are primarily responsible for the mixing
of the liquid in the wall layer and lead to the intensifi-
cation of convective heat transfer. A definite confir-
mation of this assumption is the familiar fact of im-~
provement in heat transfer when the wall layer of a
boiling liquid is subjected to ultrasonic treatment [13].
The surface bubbles begin to pulsate intensively under
the action of the ultrasonic field, thus setting up vor-
tex motion and the mixing of the liquid i the super-
heated layer, as a result of which the transfer of heat
from the heater is intensified.

Proceeding from general physical considerations,
we can qualitatively evaluate o, as a function of the
superheating and of other process parameters. We
know that the oscillations of a body emersed into an
actual liquid bring about the vortex motion of the ad-
jacent layers, with the depth of penetration for this
motion being of the order of magnitude [14)

[~ ]/% (10)

where v is the cyclical oscillation frequency. It is
natural to assume that the quantity of heat trangported
by mixing per unit time per unit area of heater sur-
face is proportional to the number n of bubbles, the
average amplitude A of their pulsations, the depth of
penetration ], the specific heat capacity c of the lig-
uid, and the temperature difference AT =T, = T:

gs = const ncAlAT. (11)

The natural frequency of the pulsations executed by
the three-dimensional bubbles in the liquid is deter-
mined by the relationship {14]

o = ‘/ ;%3. (12)

As demonstrated by T. 8. Chigareva, in the case
of surface bubbles, instead of (12) we obtain a slightly
altered formula:

o — 60 (1-+ cos 0)
= |/ —F

(12"
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Substituting (12') into (10), we find that { is directly
proportional to the mean linear dimension of the bub-
ble R = Ry, 5%x/2 in a ratio of 3: 4,

For the second coefficient of heat transfer we thus
obtain

a, = const ncAnl2 R %

x [po (1 4 cos 0)]= V4 [F ()] -1, (13)

The constants ¢, p, 7, and ¢ for the liquid can, in
first approximation, be regarded as independent of
the temperature difference AT. The relationship be-
tween n and AT is obtained from Eq. (7'). As regards
the amplitude A, it is the more substantial, the greater
the difference Ap between the internal and external
bubble pressures. We are therefore correct in writing

A=constAp= const—rTﬁ AT. (14)
Having substituted into (13) the values of n and A from
(7") and (14), as well as the separation radius R, from
the Fritz formula (6'), from the second heat-transfer
coefficient we obtain

2172 41172 \ 1/4
T e ATy
Ty g2

P (8) = 8% (1 + cos O~ [ (B)11, (15)

Qg =0b

where the factor b in this stage can be determined
only by experimentation. The consolidation of (9) and
(15) gives us a relationship for the total heat-transfer
coefficient in the first stage of nucleate boiling (the
solitary-bubble regime)

ro?
ng1/2

X

x ar @ (8) 6Y2p=%2 + bop (B) vi2GIBA T (ATY.  (16)

Despite the cumbersome nature of this formula—which,
moreover, includes indeterminate parameters a and
b—it makes it possible for us to derive significant in-
formation regarding the effect of the heat of vapor
formation, of the edge angle, the density, viscosity,
acceleration of the force of gravity, the heat capacity,
and similar characteristics of the liquid on the inten-
sity of heat transfer in the case of nucleate boiling.

NOTATION

A is the thermal conductivity of the liquid; c is the
specific heat capacity of the liquid; p is the liguid den-
sity; r is the specific heat of vapor‘generation; n is
the density of the active centers; T, and Tg are the
temperatures of the heater and the liquid (saturation)
core; AT is the temperature head; ¢ is the surface
tension factor; 6 is the edge angle; 7 is the liquid vis~
cosity; v is the kinematic viscosity; g is the gravita-
tional acceleration; p is the external pressure; p; is
the elasticity of the saturatedvaporat Ty; wand Aare
the cyclic frequency and amplitude of bubble pulsation;
0 is the thickness of the superheated bed; [ is the pen-
etration thickness of eddy motion due to bubble pulsa-
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tion in the liquid; o is the heat transfer coefficient;
x is the base radius of the surface bubble; ¢(0) and
¥(0) are the functions of the edge angle 8; R, is the
separation radius of the bubble; h is the height of the
bubble surface.
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